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Dynamics of gas-surface scattering (interaction and accommodation of 
translational and vibrational energy) is considered. Evolution of a quasi- 
particle ensemble is also investigated and the problem of quantum oscillator 
excitation is solved in the most simple way. 
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1. Introduction 

Energy accommodation induced by collisions of gas atoms and molecules with 
solid surfaces (particularly with metal surfaces) is a fundamental process in chemical 
physics and was a subject of numerous experimental and theoretical investigations. 
The main attention has been attached to translational energy accommodation. 
Survey of the work on this process may be found in review articles [1, 2]. However, 
a satisfactory understanding of a number of theoretical problems-general ex- 
pression for the energy transfer probability, normalization of the transition 
probability distribution density, limiting values of the accommodation coefficient 
for low and high kinetic energy, multi-phonon excitations, role of electron 
transitions in metals-~s still lacking. In addition experimental data have been 
recently obtained for the gas molecule vibrational relaxation induced by collisions 
with a metal surface (see e.g. Ref. [3]). In the present paper we have attempted to 
take a step toward the solving of this problem. 

A lot of different approximations are used in solid-state theory and the theory of 
interactions and inelastic collisions between gas particles. In the first case it is 
common practice to use a bulk Debye continuum model for the phonon spectrum 
and some approximations of electron emission theory [4]. In the second one there 
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are asymptotic calculations of interaction potentials [5], approximations of vibra- 
tional relaxation theory [6], semiclassical approximation in collision theory 
relative motion of colliding heavy particles is treated classically but transitions 
between their electronic and vibrational states are described by quantum mechan- 
ics), use of model potentials with empirical parameters. The aim of the present 
investigation is to stay within the framework of these approximations without 
additional limitations and to obtain analytical solutions of the above-mentioned 
problems. The simple analytical formulas provide considerable physical insight into 
the energy relaxation mechanism. 

The qualitative picture of  the process is as follows. Phonons and electrons of the 
solid are affected by gas atoms and molecules. This interaction causes creation 
and/or annihilation of corresponding quasi-particles. Semiclassical approximation 
gives a possibility to obtain the time-dependent perturbation which results in 
energy exchange between the gas and the solid. 

2. Evolution of the Quasi-Particle Statistical Ensemble 

Consider a system of  N independent particles where N is equal to the number of 
vibrational modes or free electrons in the metal target, N ~ 10 2a (further we 
suppose that N - +  ~) .  For a finite-time interval this system is affected by the 
perturbation V(t) which is the sum of the one-particle operators Vk(t). As a result 
there are transitions of individual particles from one state to another. Our first task 
is to determine the total energy change probability which contains all multi-particle 
events. 

1 be the energy change of particle k and pk(oJ)k the probability density of this Let oJk 
event. Let us then introduce the following quantities: 

p(~o) = ~ pk(co), qk = f Pk(~ doJ, Q = ~ q~. (1) 
/c k 

Let Q have a finite value and qk ~ N - 1 (if Vk ~ N -  1t2 then pe can be determined 
by means of the first-order perturbation method; the following orders do not give 
the finite contribution), qk is the probability of a single event. Then the total 
probability of n-particle transition in the system (n << N, usually n ~ 1-10 2) may 
be expressed as follows: 

N 1 Q~ _Q 
qkl qk~ 1---~ (1 _ q)  N~oo ~ . . . . .  ~ ----> e (2) 

Q~ = ~ 1 - q ~ l  1 - q k ,  i=l 
k 1 < . . .  < k n  

Note that the probability of any transition in the system is Q' = 1 - w,  w = 
exp ( -  Q), and the most probable number of single transitions is equal to Q (if 
Q ~> 1). If Q << 1 then only one particle changes its state. So Q is a measure of the 
interaction V(t) efficiency. 

1 Unless otherwise specified, atomic units are used, h = e = me = 1, and the Boltzmann 
constant is also put to be equal to unity. 
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In order to determine the total  probabil i ty  density P (co) let us introduce the charac-  
teristic functions for  p~(co) and p(co), 

f~(~,) -- e~'p~(co) aco, f = ~ f ~ ,  f ( o )  = Q, (3) 
oo k 

and consider co as a sum of  independent  r a n d o m  quantities co~. Then the spectral 
density of  the n-particle transit ion is 

W co Pn(co) = n"--~ kx .~..,~. p~q( 1 ) , " "  ,P~,~(co,~) 

= -;w f . . . f p(co,). . .p(co.)  (y.co, - co) aco ...aco. (4) 

and the corresponding characteristic funct ion is given by 

W W 
F~(T) = ~ ~ f~l (r )  . . . f~ , (r )  = -~l.f (r). (5) 

h ;1 , . . .  /r n 

Summing over n /> 1 we obtain 

F ( r )  = ft ,  F , ( r )  = W{exp [ f ( r ) ]  - 1}, (6) 
n = l  

If P(co) = ~ e- '~ dr. (7) 

Let the moment s  of  the distributions P(co) and p(co) be denoted accordingly by 
(cok> and co~. Then  one can obtain the following relations 

<co) = ~,  

d ~ 
(co~) = ( - i )~W-d~r~ [e m) - 1]~=o, 

((co - ,~)~) = ( - i )~W~-~k{e  [e - 1]}~=o, 

( ( c o -  N)e) = co~ + (--1)kN~W, k = 2, 3. 

(8) 

(9) 

(10) 

(11) 

So the total  probabi l i ty  including all many-part ic le  transitions is determined by 
first-order " p r o b a b i l i t y "  p(co). In real physical processes the range of  the variable 
co is usually limited and the expressions (8)-(11) are correct ifp(co) is localized in 
this range. 

In the case Q >> 1 it can be shown 2 that  the spectral distr ibution P(co) can be 
described by the Gaussian curve 

~ e x p  - , ~ = N,c, 2 = c o l  (12) 

2 Let the strong interaction V be proportional to a large parameter a. Then Q, p(co) andf(r)  
are proportional to a z and when calculating (7) the function f(r)  may be expanded in the vicinity 
o f t  = 0. 
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Note that the conditions of the validity of this result may be considered as those for 
the central limit theorem. 

In Sect. 5 we consider the vibrational relaxation process. Let p(~o) = pt(oJ) + 
pv(~o - s where s is a vibrational quantum. The width of Pt and pv is of the 
order of ~.~-1 (~_o is the collision time, f2ro >> 1). The vibrational energy transfer 
probability Q~ can be obtained by integrating of the corresponding distribution 
P(~o) in the vicinity of oJ ,,~ f2. Let us introduce the quantity 

= [ p~(~o- f~)d,o. (13) q~ 
am 

Ifq~ << 1 then it follows from (6) and (7) that Qv = q~. Thus Qv may be calculated 
by means of first-order perturbation theory. 

In conclusion let us consider the situation when all the quasi-particles are equiva- 
lent. In this case one should use transition amplitudes instead of probabilities. For 
instance the model of a solid adopted by Einstein consisted of atoms each of which 
vibrates with the same frequency. Then in the semiclassical approximation the 
problem of gas-solid interaction is analogous to another well-known quantum- 
mechanical problem, i.e. excitation of a quantum oscillator by an external force. 
The solution of this problem has already been obtained [7] in a rather complicated 
way. The many-particle formalism gives the solution with the aid of simple algebraic 
transformations (see Appendix). 

3. Interaction of Gas Particles with Electrons and Phonons of a Solid 

The most reliable experimental data available are those for the translational 
accommodation of inert atoms and vibrational accommodation of simple molecules 
(N2) by metal surfaces. Ionization potentials of the above gas particles are much 
greater than the metal work function q~. For these systems the interaction potential 
is only approximately subdivided into short-range (exchange) and long-range parts 
[8]. Nevertheless it is common practice to use model potentials, e.g. the Morse 
potential 

U(Z) = D[e -2~(z-ze) -- 2 e -~z-ze  )] (14) 

with empirical parameters (D is the adsorption heat, Z is the normal distance of the 
gas particle from the surface, Zo is the equilibrium distance). The exchange inter- 
action (Uex is the first term in (14)) is determined [5] by the value of the metal 
electron wave function at the position R of the gas particle and can be introduced 
phenomenologically. The form of the corresponding electron operator is V = 
K3(r - R) where v is electron coordinate and K > 0. Suppose that aZ << I. Then 
c~ = (2qb )  1/2. Far from the surface the electron wave function can be expressed by a 
double Fourier series [4] 

W(r) = ~ cq exp {ir(p N + 2~rq) - z[Z(~b -- g) + (2~rq + r[i)21112} (15) 
ff 

where q is an inverse lattice vector. Then 

Uox = f f K2l'F(R)[2F(~, Ts)p(~, pO d~ dp,, (16) 
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where F = [exp (g/T~) + 1 ] - 1 is the Fermi  distribution function of  electrons in the 
metal,  T~ is the metal  temperature ,  p is the distribution density, Phi is the electron 
m o m e n t u m  parallel to the surface and the origin of  the electron energy d ~ is the 
Fermi  level. Usually 2~b < 4rr2q~,~ (for example �9 = 0.169 [9] and q=m = 0.17 [10] 
for tungsten) the exponential  dependence of  U~• on Z is determined by the te rm 
(U~x) with q = 0. An impor tan t  consequence follows f rom this fact:  the possibility 
of  one-dimensional  description of  the gas-surface interaction. Exponential  decrease 
of  the integrand is ensured by the factor F in the range d ~ > 0 (if T~ is not very high, 
see below) and by the factor [~]2 in the range d ~ < 0. One can consider the function 
p to be constant  in the integration region (this question is discussed in Ref. [4]), 
O = po -= p(0, 0). The exponent  in [u~I2 should be expanded in powers  o f ~ / ~  and 
Oxy/q~, C,~y = p~/2. Then one obtains a 

Ugx = 2 ~ l c ~ 1 7 6  2-Z sh(27rZTJ~z) e-2~z" (17) 

I f  Z ~ Zo, and T~ is not  very high (T~ < 3000 ~ then 2~rZT~/c~ < 1 and 

ugx = A e -2~z, (18) 

where A is defined by (17) and (14), A = D exp (2c~Z,). 

F r o m  the qualitative point  of  view Uox should be characterized by its influence upon  
the electron spectrum in the metal. Let us determine the ratio 7 of  the interaction 
between two neighbouring energy states to the mean energy interval between them 
(this interval is equal to the reciprocal of  the energy state density). Similarly to 
previous calculations one can obtain 

__2Z Uex(Z). (19) 7 ' =  c~ 

Uox is essentially near the turning point  Zt, U t -  Uex(Zd = 2D + E + 
2[D(E + D)]I/L Here and hereafter E means the normal  mot ion  kinetic energy 
(for the adsorbed gas particle E ~  - D ) .  Note  that  7 = 1 if ce = 0.6, Z = 2 .&, 
Uex = 2.16 eV. I f  the corresponding value 7~ << 1 then the electron spectrum is not  
changed as in the case of  physical adsorption.  When 7t ~ 1 there is rearrangement  
of  electron distribution and chemosorpt ion  takes place. The obtained results 
depend only on parameters  of  the static electron distribution and consequently are 
valid not only for metals. 

When considering the per turbat ion of  the electron mot ion  in solids the following 
fact should be taken into account.  Energy transfer occurs if the corresponding 
electronic energy level exists and is free. As the energy of  translat ional  and vibra- 
t ional transitions investigated below is considerably lower than the forbidden zone 

3 Thenexttermintheq-expansionofU.xisUgx/U~ ~ exp {- [% - c~ - 27r%~q2/~q(a + %)]Z} 
cos (2~qR0, ~q = (c~2 + 47r2q2) 1/2. Note that there exist the phenomena which depend on 
tangential variations of the potential, e.g. rainbow scattering. 
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width in semiconductors these transitions may occur in metals. The density p~(~o) 
of  the transition g ~ g '  = d ~ + oJ is given by 

p~(co) doJ = fff e'~*(~'.pi, Ig.l~.p,,> d t l 2 F ( g ) [ 1  - F(g ' ) ]  

" po dp,, dgpo dp~t doa. (20) 

The indices i and f take account of  the internal state change of  the gas particle. 
When calculating (20) the value of  the factor Z = Zt is taken out  of  the integral (as 
the behaviour  of  the integrand is determined by the exponential term). As a result 
one obtains 

po(o~) = /~oJ, 

where 
If J = A e ~~ dtl 2, 

m 

(21) 

~e = Cep(~ Ce = (2ZJc02, (o~) = o~ exp (oJ/2T~) 
2 sh (oJ/2Ts) " (22) 

Note  that the deduction of  the expressions for the exchange interaction is based 
only on the exponential decreasing of  the electron wave function far f rom the sur- 
face. There were no assumptions about  electron behaviour inside the solid. 

Consider now the translational accommodat ion  as a result o f  the phonon  transi- 
tions in the solid. If  surface vibration is described by the usual Debye model (see 
for instance Ref. [1 ]) with the modal frequency distribution LD(oJ) doJ = 3oJ2/oJg do~ 
(oJ < o~D, o)D is the Debye frequency) then the corresponding density pph(oJ) has 
a form 

poh(o0 = ~o~J, I o~l < cod; pph(~o) = o, I oJ] > oJD, (23) 

Gh = Cp~cp(co), Cph = 6a2/MoJg.  (24) 

where M is the crystal a tom mass. It is interesting that  the dependences of  p ,  and 
Pph on oJ (if ]o~ I < wo) are similar. 

4. Translational Energy Accommodation 

Using the above results we consider the translational accommodat ion  process, The 
expression for J in (21), (23) has the form [11] 

27rE 12 , J = {A ch [(Tr - qs)A] + y -1  sh [(rr - qz)A]} (25) 
~v sh (~a) 

where v is the velocity of  the gas a tom with the mass m,  2~ = I ol/ v, y = tgc? = 
( E / D ) l l L  The width of  the distribution p(m) is seen to be of  order av (the width of  
the normalized distribution P(~o) may be much greater provided that Q is large). 

First let D >> E, T (T is the translational temperature).  Then 

�9 [  x(1 ]) \ o~----~/ 3-D + " "  ' (26) 

where x = IoJ]/o~0, oJo = ~ ( 2 D / m )  1/2 is the basic frequency o f  the potential (14). 
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F r o m  a simple numerical  estimate of  Cs and Cph one can draw the conclusion tha t  
translat ional  accommoda t ion  is a result o f  the phonon  transitions. The  basic 
parameters  of  the distribution P ( ~ )  are 

-gB~oo, /3 << 1; Q = SBTswo, /3 >> 1, (27) O ~ 9 2 

3 (28) 

J ~-5/3oJ04, /3 << 1" o~Z = 7 z = , ~BTsoJo, /3 >> i, (29) 

where t3 = 2TJ~oo, B = (Cp~ + Ce)(2rrO/~o)L 

I r E  < ~ and W << 1 then mainly adsorpt ion occurs and the adsorpt ion probabi l i ty  
is 

%a~ = 1 - exp ( -  ~/T) .  (30) 

In the region of  low temperatures  classical calculation of  the accommoda t ion  co- 
efficient n (T---> T~---> 0, n---> no, W - +  W0) has given no = 1, that  is the colliding 
particles are all adsorbed,  and the so-called " q u a n t u m "  theory has given ~o = 0 
[1, 2] (physically meaningless result). Our  consideration results in no = 1 - Wo. 
So it is just  the gas particle which causes crystal excitation and loses its kinetic 
energy that  is adsorbed.  This expression for no explains the results (see Ref. [2]) o f  
experimental  investigations of  the inert gas translational accommoda t ion  on a 
tungsten surface. In  the series of  inset gases H e - X e  the values of  D and (conse- 
quently) Q increase (Q << 1 for  He,  Q >> 1 for Ar, Q >> l for  Xe, T--> Ts -+ 0). 

Let now E >> D. Then the expression for  J can be writ ten as (result of  Ref. [12]) 

]2 
J = 2~ 2 sh (rro~/2~v)J " (31) 

The mean  value of  the energy loss is 

/o ~ 
~5 = Cph oj2J doo. (32) 

I f  v >> oJD/c~ one obtains ~ / E  = 4 m / M ,  i.e. is the classical result (m << M).  I f  
v << ~oD/~ then the upper  limit in (32) can be put  equal to infinity as in the case of  
metal  electron excitation 

C 16rr ~5 = e,ph --(ff c~( 2ES /m) ~12. (33) 

Substituting Co from (22) into (33) and making corresponding estimations one can 
find that  even in the case of  small m and large M (for instance m = 4, M = 184 for 
H e - W )  phonon  transitions (as compared  with electron transitions) contribute 
significantly to translational accommoda t ion  (up to E _~ 0.5 eV for the H e - W  
system). 

The dependence of  the accommoda t ion  coefficient upon gas particle mass may  be 
seen f rom Eqs. (28), (29), (33). As E---> oo the classical result is approached,  and 

~ m; at lower E, ~ ,-~ m-~/2. But the experimental  H e - W  data indicate that  at 
temperatures  T = 100~00  ~ a(He ~) > n(Hea). It  should be noted that  using the 
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Debye spectral density LD(~o), which is valid at low oJ and depends upon only one 
parameter oJD, appears to be incorrect in the case when the whole acoustic branch 
is important. The Debye model does not take account of the dispersion, and the 
upper spectral limit ~oD is connected with the behaviour of LD at low oJ:LD = 3oJ2/ 
~0~. One can propose the following simple model for L(co) which takes account of 
the above remarks: 

3oJ 2 
L = oJ~' ~o < o~c, L = L c  const, ~o c < ~o < ~of; 

L = 0 ,  oJ > ~of, (34) 

(~%/oJD) 3 + Lc(o~f - oJ~) = 1. (35) 

Expression (35) is the normalization condition. Isotope effect in the He-W system 
can be explained if oJ~ is twice or three times less than oJD. The problem of quanti- 
tative determination of the model parameters requires special consideration. Note 
that the dynamics of the surface atoms in the crystal are not identical to the 
dynamics of the bulk atoms [13], and the empirical parameters of the model should 
be determined from surface experiments�9 

In conclusion let us note the following problem�9 The accommodation coefficient 
was usually calculated using first-order perturbation theory�9 But the value of the 
to t a l "  probability" Q has been shown (see Refs. [1, 2]) to be often much larger than 
unity�9 There were attempts to " improve"  first-order theory by means of division 
of Q by (1 + Q/4) 2 [1] or by Q [14]. The agreement of the first-order result for the 
accommodation coefficient with the classical limit for large kinetic energy was con- 
sidered as fortuitous and misleading [1 ]. The results obtained in Sects. 2, 4 explain 
this problem�9 

5. Vibrational Relaxation 

Consider now the process of vibrational energy transfer from the gas molecules to 
the solid. Formerly the adsorption of the gas molecule was usually considered to be 
the first step in the vibrational deactivation process, and "d i rec t"  mechanism was 
supposed to be unlikely [3]. The approach suggested in Ref. [151 for vibrational 
deactivation of diatomic molecules (the values T = 600 ~ and ~ / T  _~ 3 were used 
there for estimations) is incorrect because of the relations s >> ~v (the sudden 
perturbation theory used in Ref. [15] is valid for the opposite inequality) and 
~v < ~ (transfer of the vibration quantum to one phonon of the solid is im- 
possible). In Ref. [16] vibrational relaxation is considered as a result of the energy 
exchange between the molecular vibrations and conduction electrons induced by the 
interaction of the molecular "vibrat ional"  dipole moment with the " f r ee"  elec- 
trons of the metal. An analogous model was also considered in Ref. [17]. This model 
has been criticized in Refs. [18]. Nevertheless the problem of the vibration-electron 
energy exchange is of great interest and can be solved without any assumptions 
about the behaviour of the individual metal electron. This circumstance has been 
emphasized when obtaining the expression for the exchange interaction. 
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Consider at first direct vibrational deactivation of the gas molecule induced by a 
collision with the metal surface4; interaction potentials developed as a series in x, 
the deflection (normal to the surface) of molecular atom from the equilibrium 
position, as it does in the theory of the gas phase vibrational relaxation (see for 
example Ref. [6]). The Morse potential is used for the description of the trans- 
lational motion and the following expression can be obtained for the vibrational 
transition probability: 

8rr~x 
QgX = Ce(f~)lxloDl2[(Sy + 3ya)(Tr - @) + 5y 2 + ~y~], (36) 

v 

where Xlo is the matrix element of the transition 1 ~ 0. Estimation for N2 at room 
temperature and D ___ 0.1 eV gives QgX ~ 10-a_10-2 which is in agreement with 
experiment. So the ~ direct" mechanism of vibrational relaxation due to exchange 
interaction can be realized. 

In the case when the molecule is adsorbed near the surface the probability of  the 
vibrational transition per unit time is 

0g x = 2,,Co(~)12~xloOl 2, (37) 

Estimation of (37) gives 01 x ~ 101~ sec-1. 

If the molecule has an electric multipole moment another mechanism of vibration 
quantum absorption by the metal is also possible. Let us take into account the 
" image"  forces. Charge image corresponds to the real molecular charge distribu- 
tion. Vibrational motion of the molecule induces periodic change in the metal 
charge density. Conduction electrons are characterized by the definite inertia. So 
charge vibrations in the molecule and in the metal are out of phase. This circum- 
stance results in vibrational energy absorption and Joule heat release. We shall 
consider transitions between low-lying vibrational levels. Then molecular vibrations 
are small-amplitude and r-approximation can be used (r is the relaxation time of 
electron density in the metal). After simple transformations the following ex- 
pression for the probability of molecular vibrational deactivation per unit time can 
be obtained: 

- -  02Urn, q~o f~r 
QP = ~ I + (f2r) 2' (38) 

where Um is the energy of interaction between the molecular multipole and its 
electric image, q and q' are vibrational coordinates of the molecule and i t s"  image". 
For  the allowed molecular dipole transitions 

Idlol = (, ~qr 
0~ = ~ , l  + cos  ~ o) 1 + (c2~)~' (39) 

where d~0 is the matrix element of the dipole transition 1 --~ 0, 0 is the angle between 
the molecular dipole and the normal to the surface. The problem of finding the 

4 The results (6)-(12), (36), (37) have already been reported at the conference in the Institute 
of Chemical Physics, Moscow, 1977. 
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relaxation time r in the crystal near the surface has not been solved. Using the 
value of r from the theory of metal optic properties [19] results in Q~ ~ 101~ sec-1. 

It should be noted that weak dependence of vibrational transition probability on 
all kinds of parameters (e.g. D, qb, v, m) agrees with experimental data and is con- 
nected with the resonance character of energy transfer when the translational 
energy of relative motion is slightly changed. Remember that the well-known 
Landau-Teller model for vibrational-translational transfer in the gas gives Qv ~ 
exp (-zrf2/~zv). The problem of gas-surface vibrational relaxation will be more 
carefully considered in a special paper. 

6. Concluding Remarks 

The mechanism of gas-surface energy relaxation has been investigated and a 
general expression for the energy transfer probability has been obtained using 
semiclassicaI approximation. All many-phonon (and many-electron) transitions 
are taken into account by formula (7). It should be emphasized that "many- 
phonon" expressions are determined by the function p(~), the "one-phonon" 
transition probability density which can be calculated from first-order perturbation 
theory. 

Exchange interaction is analysed on the basis of the general properties of the 
electron energy distribution and the exponential behavior of the electron density 
far from the surface, and three regions for interaction energy (7 << 1, ~, ~ 1, ~ >> 1) 
are introduced. These regions correspond to the empirical energy classification in 
the investigations of the interaction of rarefied gases with solid surfaces [10] and 
to the division of the adsorption processes into physical and chemical ones (depend- 
ing on the bond energy of the adsorbed particles) [20]. When interaction is very 
strong, ~, >> 1, the rearrangement process of metal electron structure is apparently 
that a number of metal electrons is localized at the atoms near the collision point 
(where the gas-surface interaction is the strongest). This circumstance justifies 
application of the pairwise potential method in the numerical investigation of the 
gas particle trajectory when E >~ 100 eV. At low energy this method is incorrect 
due to the delocalization of the metal valence electrons. 

In Sects. 4 and 5 are established the mechanism of inelastic collisions and the role 
of electrons and phonons in the energy accommodation process. Special considera- 
tion is required for the more concrete problems such as the mechanism and kinetics 
of nonequilibrium adsorption, and the results of the present work can be used for 
this purpose. At the present time there is poor information about the parameters 
(for instance D) of the gas-solid interaction and only order-of-magnitude estima- 
tions are possible. 

It is to be emphasized that the well-known Debye model of the solid cannot give 
adequate description of phenomena which are described by different ranges of the 
phonon spectrum. For example the value of ~'D determined by heat capacity 
measuring at low temperature (low-frequency spectral range) is larger than oJD 
obtained from electron diffraction experiments (see Ref. [21]) where the upper 
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range of the spectrum is the most important. A new simple model for the acoustic 
branch of the phonon spectrum is considered in Sect. 4. 

Appendix 

Quantum harmonic  oscillator in the f i e l d  o f  the ex terna l  f o r c e  

The problem of finding the transition probabilities in the system with the Hamil- 
tonian 

H = - ~  ~ - o~2x 2 - f ( t ) x  (1.1) 

(here the oscillator mass is taken to be equal to unity and the force f ( t )  vanishes 
quickly as time t approaches + ~ )  is equivalent to the following one: 

H -  -~-~2 - o~2x~ - f (  ( t ) x l .  (1.2) 
k = l  

After orthonormal transformation to the new coordinates 

q, = ~_, e, kxk, Xk = ~ e,~q, (A.3) 
k i 

(note that e,k ~ N-z/2 [22]) we obtain 

H = - ~ = 1  ~ - ~ +f( t )e~lq~ . (1.4) 

Wave functions of the free oscillator 

�9 n(x) = (~/~r)lI4(2nn!)-~/2 exp (-oJx2/2)H~(oJ~12x) (A.5) 

are transformed by means of the addition theorem for the Hermite polynomial 

- -  ]'Y[ (e~k)m' Hm,(Co 1/2 q~). (A.6) 1 H,(oj1/2Xk ) = ~ • • m~V 
n! 

m i  + . , .  + r a n  = n  i = 1  "" 

When calculating the transition amplitude S,~m (here n and m are finite numbers) it 
should be taken into account that the total (many-phonon) excitation of the whole 
vibrational system as N - +  oo is determined by one-phonon processes in a single 
mode. Consider first transition without excitation. In order to determine So0 we 
expand the wave function of the mode k in functions of ground and first excited 
states 

~b~ = a~(t)~b ~ + a~(t)~b~, a ~ ( - ~ )  = 3~o. (A.7) 

Simple transformations give, with an accuracy up to the order N - t ,  

Re aok(Oo)= 1 - p k / 2 ,  p k = ]eklq~~ 2, (A.8) 

f = f ( t )  e ~ t  dt, (A.9) 
oo 

N 

Soo = (~F~ I ~(oe)> = 1--I (1 - p k / 2  + irk) = exp ( - p / 2  + iv), (1.10) 
k = l  
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where v~ = Im aok(m), v = ~ v~ (v is not  needed for calculation of  the transition 
probabili ty which is equal to ]Sool 2) and 

N 
p = = Ix1~ (a.ll) 

Here the equality [q~O]2 = [x~O[2 is also used. Note that  the value o f  p is not  
changed (with accuracy to N -  1) if a finite number  o f  members is dropped f rom the 
sum (A.10). For  a~ in (A.7) we have (with an accuracy up to the order o f N  -1/2) 

a~(~) = - i e~lq~~ (a .  12) 

I f  the considered mode has an initial excitation that is a ~ ( - ~ )  = ~1 the ex- 
pressions analogous to (A.3) and (A. 12) can be obtained. 

Wave function of  the initial state consists o f  the sum of  products ] ~  ~ k,~b ~ lip= ~b~ 
F rom Eq. (A.4) one can see that  transitions in different modes are taking place 
independently. So W(~)(m) results f rom q~" by substitution ~b ~ in tF" for a~(ov)~b ~ + 
aI(ov)~bl (this circumstance has been used in calculating Soo) and by analogous 
replacement o f  ~b~. Simple algebraic transformations give the following expression: 

~,(,~.m) A,Z-k(_A,)m_k (A.13) 
Snm : (Wm ] W(n)(Og)) = Soo(n! m!)1/2 E (m - k)! (n - k)! k!'  

~c=0 

where A = - ix~~ Transition probability can be obtained from Eq. (A. 13), 

/Frnln(n'm)s (-- 1)kp-~ ]5 
P,m IS.m]  = ( A .  14) 

that is the result o f  Ref. [7]. However the present approach  is much simpler. It  is 
also clear why P,~m depends only on p that  is formally first-order calculated " p r o b -  
abil i ty" o f  the transition 0 ---> 1. 
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